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To the Instructor

Areas of Study

The first ten chapters of this text contain detailed discussions of ordinary dif-
ferential equations (ODEs); the last four chapters provide an introduction to partial
differential equations (PDEs). There are three areas of study in differential equa-
tions: theory (existence, uniqueness, and properties of solutions), solving techniques,
and applications. Every author makes a choice as to which of these three aspects of
differential equations is paramount. We believe that all three areas are important.
When students finish a first course in differential equations, we recommend that
they know when solutions to differential equations exist, when solutions are unique,
and properties that they possess; be familiar with techniques for solving differential
equations (or approximate solutions in the event that they seem intractable); and be
able to apply differential equations in a variety of situations. Section 1.3 is devoted
to existence, uniqueness, and properties of solutions to initial-value problems asso-
ciated with first-order differential equations. Parts of Sections 2.1, 4.2, 6.4, and 7.1
also contain discussions on existence, uniqueness, and properties of solutions, and
much of Chapter 8 is theoretical. As evidenced by their titles, all of Chapters 3, 5,
and 12 are devoted to applications of differential equations as are parts of Sections
6.5, 6.6, 7.9, 8.5, 14.4, and 14.6. In addition, many examples and exercises through-
out the book contain applications of differential equations from a multitude of fields.
Chapters 2, 4, 7, and 13 are devoted to techniques for finding algebraic solutions
to ODEs and PDEs. Chapters 9 and 10 contain material on how to approximate
solutions to differential equations using infinite series and numerical methods when
algebraic solutions are unavailable.

In order to create flexibility in course construction, we have tried to make
chapters, and sections within chapters, as modular as possible. We suggest that
Chapters 1–5, or parts thereof, should be early material in most courses. After this,
the order in which Chapters 6–10 are covered is at your discretion.

Prerequisites

Students must have completed two semesters of single-variable calculus; they
must not only be able to differentiate and integrate standard functions, but also
understand the meaning of these processes. A course in multivariable calculus is
beneficial, especially for PDEs. A course in linear algebra is also recommended,
although not a strict requirement. Some of the concepts developed for linear differ-
ential equations (linear independence of solutions and Wronskians) have their birth
in linear algebra. In addition, proofs of theoretical results for linear equations often
draw upon linear algebra. Finally, two techniques for solving systems of ODEs use
eigenvalues and eigenvectors of matrices, and generalized eigenvectors. Phase plane
analysis in Chapter 8 is heavily dependent on this material. In the event that your
course covers material in Chapter 8, we have included an appendix on eigenvalues,
eigenvectors, and generalized eigenvectors for students with deficiencies in this topic.

Calculators and Computers

There are many mathematical programs for calculators and computers that can
be of benefit to anyone dealing with differential equations. Mathematica, Maple,
and MatLab, to name a few, can integrate and differentiate functions, perform



labourious calculations that detract from the flow of ideas, and have subroutines
that solve certain types of differential equations. As an instructor, you must decide
whether these programs are a major component of the course, or whether to make
students aware of their existence and capabilities, but not make them a require-
ment. We have not made them an essential part of the text; we recommend that
students use them to perform mundane calculations (such as finding eigenvalues and
eigenvectors of matrices), checking a proposed solution to a differential equaton (by
doing the differentiations), or graphing a solution to a differential equation (to see
its properties). On the other hand, calculators or computers are somewhat essential
for numerical methods to approximate solutions to differential equations in Chapter
10. They can be programmed to perform the multitude of repetitive calculations.

Exercises

There is an abundance of exercises ranging from routine to challenging. Early
exercises in each section test familiarity with subject material. Difficulty with these
exercises indicates a lack of understanding of fundamental ideas. Students should be
advised to reread explanations and examples in the section. If trouble still persists,
they should seek outside help such as help centres or you personally. Later exercises
test mastery of material; they require more complicated calculations, thinking about
concepts of the section in a novel way, bringing in material from previous sections,
or a combination of these.

Chapter Summaries and Review Exercises

Concluding each chapter is a summary of ideas, formulas, and procedures, and
a set of review exercises. These exercises are important in assessing student under-
standing of the chapter as a whole. For instance, in Section 2.2 which deals with
separable equations, students know that each differential equation is separable, and
proceed to solve the problem on this basis. In review exercises, however, students do
not know, a priori, the type of the differential equation. An extra step is added to
the solution; first determine the type of the differential equation, and then proceed
with the appropriate technique for that type.

Solutions Manual

A solutions manual is available containing detailed solutions of all exercises. It
was written by the author so that students can be assured that techniques are those
covered in the text.

In what follows we give brief descriptions of the contents of each chapter, and
where appropriate, explain the rationale for our approach.

Chapter 1 — Introduction to Differential Equations

Students are introduced to the language of differential equations, what a dif-
ferential equation is, and what it means to be a solution of a differential equation
on an open interval. We choose to discuss differential equations on open intervals in
order to avoid one-sided derivatives at end points of closed intervals. Students be-
come familiar with types of solutions — implicitly defined, particular, n-parameter
families, general, and singular. Direction fields are introduced at an early stage urg-
ing students to think about first-order differential equations geometrically as well
as algebraically. Direction fields can be used to glean information about solutions



before any attempt is made to find solutions, and they can be used to check whether
proposed solutions are reasonable. The chapter also introduces students to the the-
ory of differential equations by discussing existence, uniqueness, and properties for
solutions to first-order initial-value problems.

Chapter 2 — First-order Differential Equations
This is the first chapter devoted to techniques for solving differential equations.

Methods include separation, integrating factors, homogeneous, exact, Bernoulli,
and Riccati equations. Since sections are independent of each other, you can choose
techniques useful to students in your course. For instance, it may be appropriate to
cover only linear and separable equations since the majority of applications give rise
to these types of equations. Should a particular application that you wish to cover
require one of the other techniques, you can teach it as part of this chapter, or,
return to it later in conjunction with the application. We stress differences between
linear and nonlinear equations. There is also a section on second-order equations
reducible to a pair of first-order equations.

Chapter 3 — Applications of First-order Equations
Chapter 3 introduces readers to the third aspect of differential equations, appli-

cations that give rise to first-order differential equations. This is where the process
of mathematical modelling begins in earnest. Students get an introduction to the
ideas of mathematical modelling in some of the examples and exercises of Chapter
2, but this chapter immerses them in modelling. By scaning the table of contents,
students can appreciate the plethora and variety of applications, and this is only
for first-order equations.

Chapter 4 — Linear Differential Equations
This chapter provides a thorough treatment of linear equations. It contains the

theory of linear equations and techniques to solve them. We often use second-order
equations to introduce ideas, but general results are stated and proved for nth-order
equations. We feel that students at this level do not need separate chapters for
second- and nth-order equations. Four techniques are discussed for finding particular
solutions of nonhomogeneous problems, undetermined coefficients (perhaps the most
widely used), annihilators (an alternative for arriving at the form of a particular
solution for undetermined coefficients), variation of parameters (not being subject
to the same restrictions as undetermined coefficients), and operators (popular with
engineering students).

Chapter 5 — Applications of Linear Differential Equations
Vibrating mass-spring systems which form the foundation for more compli-

cated vibration problems are given special treatment. The bulk of the chapter is
devoted to the topic for a single mass. Section 7.9 extends discussions to multiple
mass-spring systems. Because discussions of LCR circuits would parallel those for
vibrating mass-spring systems, they are treated in less detail. Electrical networks
are treated in Section 7.9. We discuss undamped resonance leading to unbounded
oscillations, and damped resonance where oscillations cannot be unbounded, but can
be detrimental or beneficial. Heaviside unit step functions are introduced to rep-
resent piecewise continuous loadings on beams, but we point out that applications
involving such functions are best handled by Laplace transforms.



Chapter 6 — Laplace Transforms

Laplace transforms, which are essential to many branches of engineering, are
treated extensively. Although Laplace transforms are particularly useful for solving
initial-value problems, we demonstrate that they can also be applied to boundary-
value problems, and can generate general solutions to linear differential equations.
Representation of instantaneous forces (in time), point forces (in space), point
masses, point charges, voltage spikes, bulk additions of solutes in mixing prob-
lems, etc., are represented by Dirac-delta functions, and Laplace transforms are the
best way to handle these functions in the context of differential equations.

Chapter 7 — Systems of Diferential Equations

Many applications give rise to systems of differential equations in many depen-
dent variables as opposed to a single differential equation in one dependent variable.
They can be linear and they can be nonlinear. We use elimination (or operators),
Laplace transforms, eigenvalues and eigenvectors of matrices, variation of parame-
ters, and decoupling to solve linear systems. They are applied to mixing problems
among multiple tanks, multiple vibrating mass-spring systems, electrical networks,
and systems akin to radioactive decay series.

Chapter 8 — Nonlinear Differential Equations and Systems

Discussions are confined to autonomous differential equations and autonomous
systems. Direction fields are replaced by tangent fields, and applied to two clas-
sical ecological models, predator-prey, and competitive-hunter. Critical points of
linear systems are categorized, and then applied to linear systems that approximate
nonlinear systems. These analyses are instrumental in displaying solutions geomet-
rically in the phase plane. Eigenvalues and eigenvectors of matrices are essential to
our approach to this topic. Results are applied to the above models as well as other
physical problems that give rise to linear and nonlinear systems.

Chapter 9 — Series Solutions of Differential Equations

In spite of the fact that Taylor series and Maclaurin series are power series,
and conversely, every power series is the Taylor or Maclaurin series of its sum,
the method by which we derive the Taylor or Maclaurin series for the solution
of a differential equation is very different from how we arrive at a power series
solution. Processes are different, but results are identical. Frobenius series solutions
for differential equations are discussed in detail with an abundance of examples
and exercises. Series solutions are derived for the differential equations of Bessel,
Legendre, Chebyshev, Hermite, and Laguerre. Important properties of resulting
functions (generating functions, orthogonality, recurrence formulas, and Rodrigues’
formulas) are included.

Chapter 10 — Numerical Solutions of Differential Equations

When a differential equation is so intractable as to not yield analytic solu-
tions, and infinite series solutions are also not available, it may be necessary to
resort to numerical approximations to solutions. In spite of the fact that numeri-
cal procedures are available for second- and higher-order differential equations, we
consider only numerical techniques for first-order equations and first-order systems.
We do so because higher-order equations and systems can be rewritten as first-order
systems. We consider predictor and predictor-corrector methods, Euler, improved



Euler, Runge-Kutta, and Adams-Moulton. It can be perilous to accept numerical
approximations without some kind of justification. One possibility is to plot approx-
imations on the direction field to see if there is a reasonable fit. Many instructors
prefer an early introduction to numerical approximations. This is possible. Sections
1, 2, and 3 which deal with numerical techniques for a single first-order differential
equation can be covered at any time thoughout your course; they do not depend on
the first nine chapters. Section 4, on the other hand, does require the introduction
of systems of differential equations in Chapter 7.

Chapter 11 — Fourier Series

Fourier series represent periodic functions, or functions that can be extended
periodically, in terms of sines and cosines. Their advantage over power series is that
the function need not be continuous, but it does need to be piecewise continuous.
We discuss full Fourier series, Fourier sine series for odd functions, and Fourier
cosine series for even functions. Fourier series are basic for most beginning courses
in partal differential equations; they also lead to more advanced techniques in future
courses.

Chapter 12 — Partial Differential Equations of Mathematical Physics

In this chapter, we do some advanced mathematical modelling by developing
the one-, two-, and three-dimensional heat conduction equations based on Faraday’s
law of heat conduction, the one-dimensional wave equation for transverse vibrations
of strings and longitudinal vibrations of bars, the two-dimensional wave equation
for transverse vibrations of membranes, and the Laplace and Poisson equations for
electrostatic potential.

Chapter 13 — Separation of Variables

Separation of variables is likely the first technique that most students learn
for solving second-order PDEs. We use it to find Fourier series representations for
simple, homogeneous problems expressed in Cartesian coordinates. We also extend
it to three types of nonhomogeneous problems. Firstly, nonhomogeneities associ-
ated with Laplace’s equation are handled by splitting the nonhomgeneous problem
into homogeneous ones. Secondly, time-independent nonhomogeneities in heat con-
duction problems are handled by splitting off the steady-state solution. Likewise,
time-independent nonhomogeneities in vibration problems split off static deflections.
Finally, when nonhomogeneities are time-dependent, a method similar to variation
of parameters is introduced. Separation of variables is applied to Laplace’s equa-
tion in polar coordinates. It is also applied to a few problems in cylindrical and
spherical coordinates, but the main discussion of separation in these coordinate sys-
tems is delayed until Chapter 14 when singular Sturm-Liouville systems have been
discussed.

Chapter 14 — Boundary-value Problems and Sturm-Liouville Systems

Section 14.2 is devoted to Sturm-Liouville (SL) systems, the basis for all sep-
aration of variables for PDEs in any number of variables and in Cartesian, polar,
cylindrical, and spherical coordinates. Regular SL systems arise in heat conduction,
vibration, and potential problems cast in Cartesian coordinates. We stress the ben-
efits of orthonormal eigenfunctions, and demonstrate that Fourier sine and cosine
series are but special cases of SL theory. We discuss singular SL systems associ-



ated with Bessel and Legendre differential equations and apply them to problems
in polar, cylindrical, and spherical coordinates.

The author would appreciate being made aware of errors in the text or solutions
manual, typographical, reasoning, referencing, etc.
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

In physical systems, and even in systems that are not physical, a change in one quan-
tity often precipitates changes in other quantities. Relationships among the rates
at which these changes take place lead to what are called differential equations, and
the number of areas of applied mathematics that give rise to differential equations
is truly amazing. The fact that they serve as mathematical models not only in the
physical sciences of engineering, physics, and chemistry, but also in less traditional
areas such as economics, medicine, and music, indicates why they are worthy of
our study. In this chapter we give various classifications of differential equations
along with some simple examples to illustrate the direction of investigations in the
remainder of the text.

1.1 Classification of Differential Equations

You have likely solved hundreds, even thousands, of equations in your mathematical
studies. You have solved algebraic equations like x3 + 5x2 − x − 5 = 0 for values
x = −5, −1, 1. You have also solved equations like x3y+ x2 = 5 and ey − e−y = 2x
that define y implicitly as functions of x for explicit definitions of the functions,
namely, y = (5− x2)/x3 and y = ln (x+

√
x2 + 1). Differential equations must also

be solved for functions, but unlike the above equations, differential equations contain
one or more derivatives of the unknown functions. This makes them much more
formidable, but at the same time, far more interesting. A differential equation
then is an equation containing derivatives of unknown functions that must be solved
for the functions. For example, each of the following equations is a differential
equation in y as a function of x, except in equation 1.1e, where x is a function of
time t:

dy

dx
= ky

(
1− y

C

)
, (k and C constants), (1.1a)

d2y

dx2
= k

√
1 +

(
dy

dx

)2

, (k a constant), (1.1b)

xy′′ + y′ + xy = 0, (1.1c)
d4y

dx4
− k4y = 1, (k a constant), (1.1d)

mx
··+ βx

·+ kx = sin t, (m, β, and k constants), (1.1e)

y(10)(x) + 4xy(5)(x)− 2x
dy

dx
= sin x. (1.1f)

Equation 1.1a is used to determine sizes of populations which follow the logistic
model (Section 3.3); equation 1.1b describes shapes of hanging cables (Section 2.8);
equation 1.1c, called Bessel’s differential equation of order zero, is found in heat
flow and vibration problems (Section 9.9); and equation 1.1d is used to determine
deflections of beams (Section 5.5). Engineers often indicate derivatives with respect
to time with dots above a function as in equation 1.1e. One dot in x· represents dx/dt,
and two dots in x·· means d2x/dt2. This equation arises in Section 5.1 when we study
vibrating mass-spring systems. Equation 1.1f has no applications that we are aware
of. We have listed it to introduce the notation y(10)(x) which is sometimes shortened
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to y(10); it represents the tenth derivative of the function y(x) with respect to x. A
superscript enclosed in parentheses on a function always indicates a derivative of the
function, not a power of the function. Likewise then, y(5)(x) is the fifth derivative of
y(x) with respect to x. The notation y′ and y′′ in equation 1.1c is the third way to
represent derivatives; they denote the first and second derivatives of y with respect
to x.

We could be more explicit in showing that a differential equation is an equation
that must be solved for functions by writing equation 1.1c in the form

xy′′(x) + y′(x) + xy(x) = 0.

Because this makes the differential equation more cumbersome to write, and to look
at, we will refrain from using this representation, unless there is a special reason for
doing so. The variable being differentiated is always dependent, depending on the
other variable in the equation.

We customarily use x to denote the independent variable and y to denote the de-
pendent variable when discussing differential equations, as in equations 1.1a,b,c,d,f.
In applications, we use letters that reflect quantities that they represent. For in-
stance, in differential equation 1.1e, x represents displacement of the mass m from
its equilibrium position, and t denotes time. If temperature at points in a sphere
depends only on distance from the centre of the sphere, we would use r to represent
this distance, and T to represent temperature.

Differential equations can be classified in various ways, as ordinary or partial,
as linear or nonlinear , and as to order. When a differential equation is to be solved
for a function of only one variable, as in equations 1.1, it is called an ordinary
differential equation. When y is a function of more than one variable, say x and
t, and the differential equation contains partial derivatives of y with respect to x
and/or t, we have a partial differential equation. Examples of partial differential
equations are

∂y

∂t
=
∂2y

∂x2
, (1.2a)

called the one-dimensional diffusion equation, and

∂2y

∂t2
=
∂2y

∂x2
, (1.2b)

the one-dimensional wave equation. Another important partial differential equation
is Poisson’s equation

∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= f(x, y, z), (1.2c)

for V (x, y, z). A special case of Poisson’s equation occurs when f(x, y, z) = 0,

∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0. (1.2d)

It is called Laplace’s equation. Chapters 1–10 deal with ordinary differential equa-
tions; Chapters 11–14 tackle partial differential equations. With this in mind, we
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shall refer to ordinary differential equations in Chapters 1–10 simply as differential
equations.

Differential equations are also classified according to the highest order derivative
contained therein.

Definition 1.1 The order of a differential equation is the order of the highest derivative in the
equation.

The first of differential equations 1.1 is first-order, the second, third, and fifth
are second-order, the fourth is fourth-order, and the last is tenth-order. Each partial
differential equation 1.2a–d is second-order.

The third way to distinguish between differential equations is most important;
it classifies them as linear or nonlinear. You have already encountered the concept
of “linearity” in various settings. First, you will recall that a linear equation in x and
y is one of the form ax+ by = c, where a, b, and c are constants; it describes a line
in the xy-plane. We say that the left side of the equation is a linear combination of
x and y. The equation Ax+By+Cz = D, where coefficients are again constants, is
linear in x, y, and z; it describes a plane in xyz-space. The left side of the equation
is a linear combination of x, y, and z. We can write a vector v with Cartesian
components (vx, vy , vz) in the form v = vx î + vy ĵ + vzk̂, where î, ĵ, and k̂ are unit
basis vectors in the x-, y-, and z-directions, respectively. This expresses v as a
linear combination of the basis vectors. If v1, v2, . . ., vn are vectors, the vector
v = c1v1+c2v2+· · ·+cnvn, where the ci are constants is called a linear combination
of vectors vi. With these ideas recalled, we now define what we mean by a linear
differential equation.

Definition 1.2 An nth-order differential equation in y(x) is said to be linear if it can be expressed
in the form

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · · + a2(x)

d2y

dx2
+ a1(x)

dy

dx
+ a0(x)y = F (x). (1.3)

The left side of the equation is a linear combination of y(x) and its n derivatives.
This is one reason for calling the equation linear; a more important reason will
be discussed in Section 4.1. Coefficients ai(x) can be numbers, but they can also
be functions of x (but not functions of y). Notice in particular that none of the
derivatives of y(x) are multiplied together, nor are they squared or cubed or taken
to any other power, nor do they appear as the argument of any transcendental
function. There is a function of x multiplying y, plus a function of x multiplying
the first derivative of y, plus a function of x multiplying the second derivative of
y, and so on, to the nth derivative of y. In order that the equation be nth-order,
we assume that an(x) is not identically equal to zero. It could be equal to zero at
isolated values of x, but not equal to zero for all x. For example, linear first- and
second-order equations are ones that can be expressed in the forms

a1(x)
dy

dx
+ a0(x)y = F (x), a2(x)

d2y

dx2
+ a1(x)

dy

dx
+ a0(x)y = F (x).

The following equations are nonlinear.

x
d2y

dx2
+ 2x

dy

dx
+ sin y = e2x,

d3y

dx3

dy

dx
− 2y = x2.
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The first equation is nonlinear because of the sin y-term; the second is nonlinear due
to the product of d3y/dx3 and dy/dx. Differential equations 1.1c,d,e,f are linear;
equations 1.1a,b are nonlinear.

Example 1.1 Determine whether the following differential equations are linear:

(a) sinx
d2y

dx2
+ 3e2xy2 = 6x (b) y′′ + exy′ + xy = sin 2x (c) (1 + y′)1/3 + x2 = 0

Solution (a) The 3e2xy2 in this equation makes the equation nonlinear, not
because of e2x, but because of y2.
(b) This equation is linear; it is of form 1.3. Coefficient ex, and sin 2x, are not
linear functions of x, but that is irrelevant. The left side of the equation is a linear
combination of y, y′ and y′′.

(c) Because we can rewrite this equation in the form
dy

dx
= −1− x6, it is linear.•

Solutions of Differential Equations

Differential equations must be solved for functions. A function is a solution of
a differential equation if it satisfies the following requirement.

Definition 1.3 A function is a solution of a differential equation on an open interval† I if substi-
tution of the function into the differential equation reduces the differential equation
to an identity on the interval.††

What we mean by saying that the differential equation is “reduced to an iden-
tity” is that when the proposed solution is substituted into the differential equation,
left and right sides of the equation become equal at every point in the interval I.
For example, to show that the function y(x) = e5x− 2e−x + x2 + 2x is a solution of
the differential equation

d2y

dx2
− 4

dy

dx
− 5y = −5x2 − 18x− 6

on the interval −∞ < x < ∞, we substitute it into the left side of the differential
equation,

d2y

dx2
− 4

dy

dx
− 5y = (25e5x − 2e−x + 2)− 4(5e5x + 2e−x + 2x+ 2)

− 5(e5x − 2e−x + x2 + 2x)
= −5x2 − 18x− 6.

Since this is the right side of the differential equation, we have verified that substi-
tution of the function into the differential equation reduces it to an identity on the
interval −∞ < x <∞.

† By considering differential equations on open intervals we avoid one-sided derivatives
at the ends of the interval.

†† This is a text on real differential equations, and therefore we seek real-valued so-
lutions. We may sometimes find it useful to introduce complex numbers, but ulti-
mately we want real solutions.
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Example 1.2 Show that y(x) = C1 cos 3x+ C2 sin 3x is a solution of the differential equation

d2y

dx2
= −9y

on the interval −∞ < x <∞ for any constants C1 and C2.

Solution If we substitute the function into the left side of the differential equa-
tion, we get

d2y

dx2
= −9C1 cos 3x− 9C2 sin 3x.

Substitution into the right side of the equation gives

−9y = −9(C1 cos 3x+ C2 sin 3x).

Since these expressions are equal for all x and any C1 and C2, the given function
is indeed a solution of the differential equation on the interval −∞ < x < ∞.
Because y(x) = C1 cos 3x+C2 sin 3x contains two arbitrary constants, it is not just
a solution, but a double-infinity of solutions. We call it a 2-parameter family of
solutions.•

Example 1.3 What is the largest interval on which y(x) = x−1/2 sinx is a solution of the differ-
ential equation

x2 d
2y

dx2
+ x

dy

dx
+
(
x2 − 1

4

)
y = 0?

Solution Substitution of the function into the left side of the differential equation
gives

x2 d
2y

dx2
+ x

dy

dx
+
(
x2 − 1

4

)
y = x2

(
− sinx√

x
− cosx
x3/2

+
3 sin x
4x5/2

)

+ x

(
cosx√
x
− sin x

2x3/2

)
+
(
x2 − 1

4

)
sin x√
x

= sin x
(
−x3/2 +

3
4
√
x
− 1

2
√
x

+ x3/2 − 1
4
√
x

)

+ cosx(−
√
x+
√
x)

= 0.

Consequently the function y(x) = x−1/2 sinx is a solution of the differential equation
and is so for all values of x for which differentiations make sense; namely, x > 0.•

Finding Versus Checking Solutions to Differential Equations

There is a vast difference between checking whether a function is a solution of
a differential equation, and finding a solution of a differential equation. If we have
a function that we believe to be a solution of a differential equation, it is relatively
simple to check whether this is indeed the case. As in Examples 1.2 and 1.3, we
simply substitute the function into the differential equation to see if it reduces the
equation to an identity. This means that you should never give an incorrect solution
to a differential equation. You can always check whether it is correct.
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Finding solutions to a differential equation can sometimes be a formidable task,
even an impossible one. Much of this text is devoted to finding solutions of certain
types of differential equations, but the reader should realize that many equations,
especially those that arise in engineering, physics, economics, etc, may not fall into
these categories. Particularly troublesome are nonlinear equations; to find exact
solutions, it may be necessary to resort to methods beyond the scope of this book.
Alternatively, approximate solutions can be derived with the methods in Chapters
9 and 10.

Intervals of Validity for Solutions to Differential Equations

When differential equations arise in applications, intervals on which solutions
are desired are usually known. For instance, differential equation 1.1b describes
the shape of a hanging cable, and therefore it would be solved on the open interval
0 < x < L, given that the ends of the cable are at x = 0 and x = L. Equation
1.1e describes the displacement of a mass on the end of a spring, and it would be
solved for t > 0, given that the motion of the mass commences at time t = 0. When
differential equations do not arise from applications, we often find solutions, and
subsequently determine their domains of validity. For instance, it is easy to see
(or check) that exponential functions y(x) = Ce2x are solutions of the differential
equation dy/dx = 2y for any value of the constant C, and they are all solutions on
the interval −∞ < x <∞. It sometimes happens, however, that different solutions
of a differential equation are defined on different intervals. For example, elementary
integration suggests that functions that satisfy the differential equation

dy

dx
=

1
(x+ 2)2

, (1.4)

are of the form

y(x) =
−1
x+ 2

+ C, (1.5a)

where C is an arbitrary constant. But where is this function a solution of differential
equation 1.4? Clearly the differential equation need not be considered at x = −2.
The solution is valid on the interval x < −2, or the interval x > −2, or any
subinterval of these intervals, but not on any interval that contains x = −2. A
better description of solutions is

y(x) =





− 1
x+ 2

+ C1, x < −2

− 1
x+ 2

+ C2, x > −2
(1.5b)

where C1 and C2 are arbitrary (unrelated) constants. Expression 1.5b contains
solutions of differential equation 1.4 on the interval x < −2, and solutions on the
interval x > −2, but they are completely independent solutions. Solutions have
the same form on these intervals, but they are unrelated. We often use compact
notation 1.5a for solutions of differential equations like 1.4, but realize that further
analysis of the differential equation and its solutions might necessitate a division of
1.5a into its component parts 1.5b.
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Example 1.4 Find solutions of the differential equation

(x2 − 1)
dy

dx
= x.

Solution When we write the differential equation in the form

dy

dx
=

x

x2 − 1
,

it can immediately be integrated to give

y(x) =
1
2

ln |x2 − 1|+ C.

The solution should clearly not be considered at x = ±1. It is valid on the intervals
−∞ < x < −1, −1 < x < 1, and 1 < x <∞. As a result, the best way to write the
solution is

y(x) =
1
2





ln (x2 − 1) + C1, −∞ < x < −1
ln (1− x2) + C2, −1 < x < 1
ln (x2 − 1) + C3, 1 < x <∞.

We have an infinity of solutions of the differential equation on the interval −∞ <
x < −1, an infinity of solutions on the interval −1 < x < 1, and an infinity of
solutions on the interval 1 < x <∞.•

Implicitly Defined Solutions

In the differential equations that we have considered, x has been the inde-
pendent variable and y the dependent variable. In every case, solutions have been
defined explicitly; that is, solutions have been written in the form y = y(x). Because
functions can be defined implicitly as well as explicitly, it should not be surprising
that solutions of a differential equation might be defined implicitly rather than
explicitly. For example, we have plotted
the curve 5y3 + x3 + x− 10y = 1 in
Figure 1.1. It defines three functions,
one being that part of the curve above
the point P , a second being the part
of the curve between P and Q, and the
third being the part of the curve below

y

x

1

-3 -2 -1 1 2 3

-1

P

Q

y x1( )

y x2( )

y x3( )

Q. We claim that each of these functions Figure 1.1
satisfies the nonlinear differential equation

dy

dx
=

3x2 + 1
10− 15y2

.

To prove this, we differentiate the equation of the curve implicitly with respect to
x,

15y2 dy

dx
+ 3x2 + 1− 10

dy

dx
= 0.

When this is solved for dy/dx, we obtain

dy

dx
=

3x2 + 1
10− 15y2

,
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the given differential equation. All three of the functions defined by the equation
5y3 + x3 + x − 10y = 1 and shown in Figure 1.1 satisfy the differential equation,
but they do so on different intervals. The uppermost function y1(x) satisfies the
differential equation on the interval −∞ < x < xP , where xP is the x-coordinate
of P ; the middle function y2(x) satisfies the differential equation on the interval
xQ < x < xP , where xQ is the x-coordinate of Q; and the lowest function y3(x) is
a solution on the interval xQ < x < ∞. We cannot find these functions explicitly,
as it is impossible to solve 5y3 + x3 + x− 10y = 1 for y in terms of x, but in Figure
1.1, we have their graphs. Each graph is called a solution curve of the differential
equation.

The differential equation identifies the points P and Q. At these points, the
slope of the curve is undefined, and this occurs when 10 − 15y2 = 0. Thus, y-
coordinates of P and Q are ±

√
2/3. Corresponding x-coordinates can be obtained

by substituting these values of y into 5y3 + x3 + x− 10y = 1,

±5(2/3)3/2 + x3 + x∓ 10(2/3)1/2 = 1.

These equations can be solved numerically for xP ≈ 1.68 and xQ ≈ −1.44.
We formalize these ideas in the following definition.

Definition 1.4 An equation f(x, y) = 0 is said to implicitly define a solution of a differential
equation on an open interval I if there exists a function, defined implicitly by the
equation, that satisfies the differential equation on I.

The above example illustrates that an equation f(x, y) = 0 might implicitly
define more than one solution of a differential equation. Here are two further illus-
trations of implicitly defined solutions.

Example 1.5 Find solutions of the nonlinear differential equation

y
dy

dx
= −x.

Solution If we integrate both sides of the equation with respect to x, we obtain
∫
y
dy

dx
dx =

∫
−x dx = −x

2

2
+ C.

Integration on the left is what might be called backwards implicit differentiation;

find an expression which when differentiated with respect to x gives y
dy

dx
. Such an

expression is
y2

2
. In other words, we can write that

y2

2
= −x

2

2
+ C, or, x2 + y2 = 2C.

Since C is an arbitrary constant, but must be positive in order that the equation
define functions, we replace it with D2, in which case, solutions of the differential
equation are defined implicitly by

x2 + y2 = D2.

Geometrically, this equation describes a family of circles of radius D centred at the
origin, one of which is shown in Figure 1.2a. Algebraically, the equation defines
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two continuous functions on the interval −D ≤ x ≤ D, y(x) =
√
D2 − x2 and

y(x) = −
√
D2 − x2. Both are solutions of the differential equation on the interval

−D < x < D. Notice that the endpoints x = ±D have been removed, and there are
two reasons for this. Firstly, we agreed to discuss solutions of differential equations
only on open intervals, and secondly, even if we had not made this agreement,
these functions do not have derivatives at x = ±D, and cannot therefore satisfy
the differential equation at these points. The equation x2 + y2 = D2 defines other
functions on the interval −D < x < D, one being that in Figure 1.2b. But this
function is not a solution of the differential equation on this interval because it does
not have a derivative at x = 0.•

y

xD

y

xDD-

Figure 1.2a Figure 1.2b

Example 1.6 Show that the equation y = (x + y)[ln y + C], where C is a constant, implicitly
defines solutions of the differential equation

dy

dx
= − y2

x2 + y2 + xy
.

Solution Let y(x) be any function that is implicitly defined by any one of the
curves y = (x+y)[ln y+C]. To show that its derivative satisfies the given differential
equation, we use implicit differentiation. It is best (but not necessary) to isolate the
constant C,

y

x+ y
− ln y = C.

Implicit differentiation now gives

(x+ y)dy/dx− y(1 + dy/dx)
(x+ y)2

− 1
y

dy

dx
= 0.

When we multiply by y(x+ y)2, we get

y(x+ y)
dy

dx
− y2

(
1 +

dy

dx

)
− (x+ y)2

dy

dx
= 0.

We now solve this for dy/dx,

dy

dx
=

y2

y(x+ y)− y2 − (x+ y)2
= − y2

x2 + xy + y2
.
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In Figure 1.3 we have shown plots of
the curves y = (x+ y)[ln y + C] for
values C = 1 and C = 2. Any function
defined by any one of these curves
implicitly defines a solution of the
differential equation on some interval.

x

y2

1

-2 1 2

C1C1

C2

The interval could be x < 0, or Figure 1.3
−∞ < x < ∞, depending first on the choice of constant C, and then on the
particular choice of curve resulting from that C.•

In these two examples, we used graphs to illustrate implicitly defined solutions
of differential equations. To determine algebraically when an equation implicitly
defines functions, we can use the “implicit function theorem” from calculus. It is
discussed in Exercise 47 at the end of this section.

Boundary and Initial Conditions

When differential equations occur in applications, they are usually accompanied
by subsidiary conditions called initial or boundary conditions. For example, suppose
a drug such as glucose is administered intravenously into the bloodstream of a
hospital patient at a constant rate R units per unit time. It is often assumed that
the body uses the glucose up at a rate proportional to the amount present at that
time. If A(t) is the amount of glucose in the blood as a function of time t, then its
derivative dA/dt is the time rate of change of the amount of glucose in the blood.
It must be equal to the rate R at which glucose enters the bloodstream less the rate
kA at which the body uses it up,

Rate glucose
     enters

Rate glucose
  is used up

Rate of change
of the amount
of glucose

dA

dt
= R− kA, (1.6)

where k > 0 is a constant. This is a differential equation for A(t). If the initial
amount of glucose in the blood at time t = 0 is A0, then A(t) must also satisfy
A(0) = A0. This is an initial condition that solution(s) of the differential equation
must also satisfy. In other words, the real problem is to find solution(s) of differential
equation 1.6 that also satisfy the initial condition A(0) = A0,

dA

dt
= R− kA, t > 0, (1.7a)

A(0) = A0. (1.7b)

This is the form in which analysts in applied areas find differential equations —
the differential equation is accompanied by subsidiary conditions that express other
requirements of solutions. We call problem 1.7 an initial-value problem. It is not
difficult to verify that solutions of the differential equation are

A(t) =
R

k
+ Ce−kt, (1.8)

for any constant C. When we impose the initial condition, we obtain
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A0 = A(0) =
R

k
+ C.

Thus, C = A0 −R/k, and a solution of the initial-value problem is

A(t) =
R

k
+
(
A0 −

R

k

)
e−kt. (1.9)

This was your first exposure to mathematical modelling with differential equations.
We turned the physical assumption that the body uses glucose up at a rate propor-
tional to the amount present into differential equation 1.6. To complete the model
we added the initial condition A(0) = A0, resulting in initial-value problem 1.7.

Mathematical modelling is one of the most important areas of mathematics.
It is used to describe oscillations of physical systems such as machinery, buildings
during storms, and currents in electical networks. Models have been constructed
to describe the spread of diseases, the conduction of heat, and the diffusion of
chemicals. The list of applications of mathematical models is vast, and ever growing.
We will discuss mathematical modelling in numerous applications of differential
equations throughout the rest of this text. We may not always mention that we are
doing mathematical modelling, but the reader will recognize this.

A second situation that may already be familiar to some readers is that of a
mass M suspended from a spring with constant k. If the mass is also subject to air
drag that is proportional to its velocity, then displacement x(t) of the mass from its
equilibrium position as a function of time t must satisfy the differential equation

M
d2x

dt2
+ β

dx

dt
+ kx = 0, (1.10a)

where β > 0 is a constant. (Don’t worry if you have never seen this equation
before. We will derive and analyze it from every possible viewpoint in Chapter 5.)
Accompanying the differential equation will be two initial conditions specifying the
position and velocity of the mass at some initial time t0,

x(t0) = x0, x′(t0) = v0. (1.10b)

The initial-value problem then consists of finding solution(s) of differential equation
1.10a that also satisfy initial conditions 1.10b.

Equation 1.1d, which is used to determine the deflection of a beam, is normally
accompanied by four conditions, two at each end x = 0 and x = L of the beam.
Examples are

y(0) = y(L) = 0, y′′(0) = y′′(L) = 0.

They are called boundary conditions. Differential equation 1.1d together with
these boundary conditions is called a boundary-value problem. It is straightfor-
ward to verify that the function

y(x) = C1e
kx + C2e

−kx + C3 sin kx+ C4 cos kx− 1
k4
, (1.11)

where C1, C2, C3, and C4 are arbitrary constants, satisfies differential equation 1.1d.
When the boundary conditions are applied, these constants must satisfy the four
equations
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0 = C1 + C2 + C4 − 1/k4,

0 = C1e
kL + C2e

−kL + C3 sin kL+ C4 cos kL− 1/k4,

0 = C1 + C2 − C4,

0 = C1e
kL + C2e

−kL − C3 sin kL− C4 cos kL.

The solution is

C1 =
1

2k4(1 + ekL)
, C2 =

ekL

2k4(1 + ekL)
, C3 =

csc kL− cotkL
2k4

, C4 =
1

2k4
.

With these, we have a solution of the boundary-value problem.

Example 1.7 Prove that y = (C1 + C2x)e−2x + 1/4 is a solution of the differential equation

d2y

dx2
+ 4

dy

dx
+ 4y = 1

for all x. Find a solution that satisfies the initial conditions y(0) = 1 and y′(0) = −1.

Solution When we substitute y = (C1 +C2x)e−2x + 1/4 into the left side of the
differential equation, we get

d2y

dx2
+ 4

dy

dx
+ 4y = (4C1 − 4C2 + 4C2x)e−2x + 4(C2 − 2C1 − 2C2x)e−2x

+ 4[(C1 + C2x)e−2x + 1/4] = 1.

Because these calculations are valid for all x, the given function is a solution of the
differential equation for all x. The initial conditions require

1 = y(0) = C1 +
1
4
, −1 = y′(0) = C2 − 2C1.

These imply that C1 = 3/4 and C2 = 1/2, and therefore a solution of the initial-
value problem is y = [(3 + 2x)e−2x + 1]/4.•

Example 1.8 Find a solution of the differential equation (x− 1)
dy

dx
= 1 that also satisfies the

condition y(−1) = 5, and one that satisfies y(4) = 6.

Solution If we write
dy

dx
=

1
x− 1

, integration gives y = ln |x− 1|+ C.

This compact notation from elementary calculus, although correct, disguises the
true nature of the differential equation and its solutions. Clearly the differential
equation makes no sense at x = 1. It should be considered on the intervals x < 1
and x > 1, or any subinterval of these intervals. Solutions on these intervals are

y =
{

ln (1− x) + C1, x < 1
ln (x− 1) + C2, x > 1

.

This is a much more accurate description of solutions than the compact notation y =
ln |x− 1|+C. To satisfy the condition y(−1) = 5, we use the solution ln (1− x)+C1.
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It requires 5 = ln 2 + C1, from which C1 = 5− ln 2. A solution is therefore y(x) =
ln (1− x)+5−ln 2, valid on the interval x < 1. To satisfy the condition y(4) = 6, we
use the solution ln (x− 1)+C2. It requires 6 = ln 3+C2, from which C2 = 6− ln 3.
A solution is therefore y(x) = ln (x− 1) + 6− ln 3, valid for x > 1.•

Did you notice that in Examples 1.7 and 1.8, we did not ask for “the” solution
of the initial-value problem; we asked for “a” solution. The reason for this is that
we have no way of knowing whether there is only one solution, or many solutions,
and the word “the” would imply one solution. In Section 1.3, we find out when we
can expect an initial-value problem to have one, and only one, solution. Until then,
we must not be so bold as to say that once we have “a” solution to an initial-value
problem, we have “the” solution to the problem.

Families of Solutions and Singular Solutions

We claim, without justification at the moment, that every solution of differential
equation 1.6 can be written in form 1.8, and every solution of equation 1.1d can
be expressed as 1.11. We call expression 1.8 a one-parameter family of solutions of
equation 1.6, and expression 1.11 a four-parameter family of solutions of equation
1.1d. In both cases the number of parameters (or arbitrary constants) is the same
as the order of the differential equation. We might suspect a general result emerging
here to the effect that every solution of an nth-order differential equation is contained
in an n-parameter family of solutions. For linear differential equations this is true
(a fact that will be proved later), but unfortunately it is not generally true for
nonlinear equations. As an illustration, consider the nonlinear equation

d2y

dx2
=
(
dy

dx

)2

. (1.12)

In Example 2.30, we apply standard techniques for solving differential equations to
obtain the two-parameter family of solutions y(x) = C1 − ln (C2 + x). This two-
parameter family of solutions does not, however, contain all solutions of the differ-
ential equation, because no choice of C1 and C2 will give the perfectly acceptable
solution y(x) = k, where k is a constant. Constant functions are not particularly
interesting, but they are nonetheless solutions that are not contained within the
two-parameter family. Such solutions are called singular solutions of the two-
parameter family. Notice that we say that a singular solution is a singular solution
of the family of solutions, not a singular solution of the differential equation. We
say this because sometimes by writing a family of solutions of a differential equation
in a different form, the new family may contain the singular solution of the original
family.

Example 1.9 Show that y(x) =
1

1 + Ce−x
is a solution of the nonlinear differential equation

dy

dx
= y(1− y)

on the interval −∞ < x <∞ for any positive constant C. Can you see any singular
solutions of this family of solutions?

Solution Since
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dy

dx
=

−1
(1 + Ce−x)2

(−Ce−x) =
Ce−x

(1 + Ce−x)2

and

y(1− y) =
1

1 + Ce−x

(
1− 1

1 + Ce−x

)
=

Ce−x

(1 + Ce−x)2
,

the function is indeed a solution of the differential equation. Because C > 0, the
function is a solution on the interval −∞ < x < ∞. It is clear that the function
y(x) ≡ 0 is also a solution of the differential equation, and it cannot be obtained
from (1 + Ce−x)−1 for any value of C. Thus, y(x) ≡ 0 is a singular solution of the
one-parameter family of solutions.•

General Solutions

We have illustrated that a solution of a differential equation that contains the
same number of arbitrary constants as the order of the differential equation may or
may not contain all solutions of the differential equation. In spite of this unfortunate
circumstance, there do exist classes of differential equations for which a solution with
the same number of arbitrary constants as the order of the equation does represent
all possible solutions (linear equations have this property). This prompts us to make
the following definition.

Definition 1.5 An n-parameter family of solutions of an nth-order differential equation is said to
be a general solution if it contains all solutions of the differential equation†.

Consequently, in order that a family of functions be a general solution of a
differential equation, three conditions must be satisfied:
1. Each function in the family must be a solution of the differential equation.
2. The family must contain the requisite number of arbitrary constants (n for an

nth-order differential equation).
3. The family must contain all solutions of the differential equation.

Notice that we speak of “a” general solution of a differential equation, and not
“the” general solution. The reason for this is that if there is one general solution of a
differential equation, then there is an infinite number of general solutions, an infinite
number of ways to express all solutions of the differential equation. For instance,
two solutions of the linear differential equation x2y′′ − 4xy′ + 6y = 0 are x3 and
x2. It is straightforward to show that for any constants C1 and C2, the function
y(x) = C1x

3 + C2x
2 is also a solution; it is a two-parameter family of solutions of

the differential equation. We cannot yet, but in Chapter 4 we will be able to prove
that every solution of the differential equation can be expressed in this form, and
hence y(x) = C1x

3 + C2x
2 is a general solution. Functions x3 − x2 and 2x3 + 4x2

are solutions of the differential equation, and y(x) = C3(x3 − x2) + C4(2x3 + 4x2)
is also a general solution. So also is y(x) = C5(3x3 + 8x2) + C6(x2 − 4x3), but
y(x) = C7(x3 − 2x2) + C8(3x3 − 6x2) is not a general solution. Can you see the
difference?

† Readers should be aware that not all authors agree on this definition of a general
solution of a differential equation. Some do not require a general solution to contain
all solutions of the differential equation. To them, an n-parameter family of solutions
is a general solution.
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Example 1.10 Show that y(x) = ex(C1 cos 2x + C2 sin 2x) is a two-parameter family of solutions
of the linear differential equation

d2y

dx2
− 2

dy

dx
+ 5y = 0

on the interval −∞ < x <∞. Is it a general solution?

Solution If we substitute y(x) into the left side of the differential equation,

d2y

dx2
− 2

dy

dx
+ 5y = ex(−3C1 cos 2x− 4C1 sin 2x− 3C2 sin 2x+ 4C2 cos 2x)

− 2ex(C1 cos 2x− 2C1 sin 2x+ C2 sin 2x+ 2C2 cos 2x)
+ 5ex(C1 cos 2x+ C2 sin 2x) = 0.

This shows that y(x) satisfies the differential equation, and does so for all x. We
cannot be sure that this two-parameter family of solutions contains all solutions of
the differential equation, and cannot therefore claim that it is a general solution.
In Chapter 4, when we consider the whole topic of linear differential equations, we
rectify this.•

Example 1.11 Find a general solution for the differential equation
d2y

dx2
= xe−x.

Solution Integration of both sides of the differential equation, with integration
by parts on the right, gives

dy

dx
= −xe−x − e−x + C1.

A second integration yields

y(x) = xe−x + 2e−x + C1x+ C2.

Elementary calculus assures us that inclusion of constants of integration leads to all
solutions of the differential equation, and therefore we have a general solution.•

There is no simple procedure that always determines whether an n-parameter
family of solutions of an nth-order differential equation is a general solution. It
may happen, as in Example 1.11, that the method of arriving at the n-parameter
family of solutions guarantees that all solutions are captured. Unfortunately, this
is the exception rather than the rule. In Example 1.7, we illustrated that y =
(C1 +C2x)e−2x +1/4 is a two-parameter family of solutions of the linear differential
equation y′′ + 4y′ + 4y = 1. At this time, it is not possible for us to show that all
solutions of this differential equation can be obtained by specifying values for C1

and C2, and hence we cannot claim to have a general solution.
In spite of the fact that we do not have a definitive procedure by which to

determine whether an n-parameter family of solutions of an nth-order differential
equation is a general solution, there do exist classes of differential equations for
which this is indeed the case. We shall certainly point them out as we encounter
them. When this is the case, we need not worry about singular solutions; there
cannot be any. As we have already mentioned, linear differential equations fall into
this categary, and we verify this in Section 2.1 and Chapter 4.
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Some differential equations are immediately solvable (or, as we often say, im-
mediately integrable). For example, to solve a linear differential equation of the
form

dy

dx
= M(x), (1.13)

where M(x) is a given function, we integrate both sides of the equation with respect
to x to obtain a one-parameter family of solutions

y(x) =
∫
M(x) dx+ C. (1.14)

Once again, elementary calculus assures us that by including the constant of inte-
gration, we have all solutions of the differential equation. Hence, this one-parameter
family of solutions is a general solution of the differential equation.

This result is easily extended to linear, nth-order differential equations of the
form

dny

dxn
= M(x), n a positive integer. (1.15)

We integrate successively n times to obtain a general solution

y(x) =
∫
· · ·
∫
M(x) dx · · · dx+ C1 + C2x+ · · ·Cnx

n−1. (1.16)

Example 1.12 Find the solution of the initial-value problem

d2y

dx2
= cos 2x+ x, y(0) = 0, y′(0) = 2.

Solution Two integrations of the differential equation give a general solution

y(x) = −1
4

cos 2x+
x3

6
+ C1x+ C2.

The initial conditions at x = 0 require C1 and C2 to satisfy the equations

0 = y(0) = −1
4

+ C2, 2 = y′(0) = C1.

Thus, the solution of the initial-value problem is

y(x) = −1
4

cos 2x+
x3

6
+ 2x+

1
4
.

Notice that we called this function “the” solution of the initial-value problem rather
than “a” solution. We are warranted in doing this because integration led to a
general solution of the differential equation, meaning that the family contains all
solutions of the differential equation. In addition, there is one, and only one, solution
of the equations for C1 and C2. Thus, the solution obtained can be the only solution
of the problem.•
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Particular Solutions

When a solution of a differential equation contains no arbitrary constants, it
is called a particular solution of the differential equation. It follows therefore
that particular solutions can be obtained by assigning specific values to arbitrary
constants in a family of solutions. For example, y(x) = 5− ln (3 + x) is a particular
solution of differential equation 1.12, as is y(x) = − ln x, both being obtained from
y(x) = C1− ln (C2 + x) by specifying values for C1 and C2. On the other hand, the
singular solution y(x) = 10 is also a solution, but it cannot be obtained from this
two-parameter family of solutions. The function y(x) ≡ 0 is also a particular solution
of equation 1.12, and it is a singular solution. It is called the trivial solution. We
are invariably interested in nontrivial solutions of differential equations, but it may
be important to note that a differential equation has the trivial solution.

Example 1.13 Find a particular solution of the differential equation

5
d3y

dx3
+ 3

d2y

dx2
+ 2y = 4.

Solution In Chapter 4 we develop systematic techniques for finding particular
solutions for differential equations such as this. But clearly such techniques are not
needed here; a simple glance tells us that y(x) = 2 is a solution, and since it contains
no arbitrary constants, it is a particular solution.•

We have five objectives in studying differential equations. One objective is to
determine conditions that guarantee that differential equations have solutions. A
second objective is to find solutions of differential equations, and we will discuss
many techniques for finding solutions. Thirdly, if we cannot find solutions of a par-
ticular differential equation, we would like to glean whatever information is available
about solutions. Fourthly, we want to know what properties solutions of differential
equation can be expected to possess. Finally, we want to use differential equations
to model a multitude of applications.

The fourth objective is especially important when it comes to applications.
When differential equations arise in applications they often involve parameters (con-
stants) of the application. We want to know how values of these parameters affect
solutions. For instance differential equation 1.1e describes displacement of a mass
m on the end of a spring (with constant k) subject to drag proportional to velocity
(with constant β). Intuitively, values of the parameters m, β, and k determine the
nature of the motion of the mass. Solutions of the differential equation should reflect
these expectations. In other words, we want to understand every aspect of differen-
tial equations; conditions guaranteeing existence of solutions, techniques for finding
solutions, information about solutions when they are unattainable, properties of
solutions, and applications.

EXERCISES 1.1

In Exercises 1–8 determine open intervals in which each function of the family satisfies
the differential equation. State whether the differential equation is linear or nonlinear.

1. y(x) = 2 + Ce−x2
;

dy

dx
+ 2xy = 4x
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2. y(x) =
x3

2
+ Cx3e1/x2

; x3 dy

dx
+ (2− 3x2)y = x3

3. y(x) = C1 sin 3x+ C2 cos 3x;
d2y

dx2
+ 9y = 0

4. y(x) =
C2

1e
2x + 1

2C1ex
+ C2;

(
d2y

dx2

)2

= 1 +
(
dy

dx

)2

5. y(x) = C1e
2x cos (x/

√
2) + C2e

2x sin (x/
√

2); 2
d2y

dx2
− 8

dy

dx
+ 9y = 0

6. y(x) = C1 cos 2x+ C2 sin 2x+ C3 cosx+ C4 sinx;
d4y

dx4
+ 5

d2y

dx2
+ 4y = 0

7. y(x) = (C1 + C2x− x2/4)e4x; 2
d2y

dx2
− 16

dy

dx
+ 32y = −e4x

8. y(x) = C1 cos (2 lnx) + C2 sin (2 lnx) + 1/4; x2 d
2y

dx2
+ x

dy

dx
+ 4y = 1

In Exercises 9–18 determine whether the differential equation is linear or nonlinear.
Make no attempt to solve the equation.

9. 2x
d2y

dx2
+ x3y = x2 + 5 10. 2x

d2y

dx2
+ x3y = x2 + 5y

11. 2x
d2y

dx2
+ x3y = x2 + 5y2 12. x

d3y

dx3
+ 3x

d2y

dx2
− 2

dy

dx
+ y = 1− sinx

13. x
d3y

dx3
+ 3y

d2y

dx2
− 2

dy

dx
+ y = 10 sinx 14. sin y

d3y

dx3
+ 3x

d2y

dx2
− 2

dy

dx
+ y = 10 sinx

15. y′′ − 3y′ − 2y = 9 sec2 x 16. yy′′ + 3y′ − 2y = ex

17. (1 + y′)1/3 + x2 = 4 18. y′′′′ + y′′ − y = lnx

In Exercises 19–22 find a particular solution of the differential equation in Exercise 3
that satisfies the conditions.
19. y(0) = 1, y′(0) = 6 20. y(0) = 2, y(π/2) = 3
21. y(π/12) = 0, y′(π/12) = 1 22. y(1) = 1, y(2) = 2

In Exercises 23–27 find a general solution for the differential equation.

23.
dy

dx
= 6x2 + 2x 24.

dy

dx
=

1
9 + x2

25.
d2y

dx2
= 2x+ ex 26.

d2y

dx2
= x lnx

27.
d3y

dx3
=

1
3x5

28. (a) Find a solution y = y(x) of the initial-value problem

dy

dx
=

x

(1− x2)1/3
, y(0) = 2.

(b) What is the largest interval on which y(x) is a solution of the initial-value problem?
(c) What is the largest interval on which y(x) is defined?
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29. (a) Verify that y = x4/4 is a solution of the initial-value problem

dy

dx
= 2x

√
y, y(0) = 0.

(b) Find another solution of the problem.

In Exercises 30–34 show that the equation implicitly defines solutions of the differential
equation. State whether the differential equation is linear or nonlinear.

30. 4x2 + Cy2 = 1,
dy

dx
=

4xy
4x2 − 1

Do this by isolating C before differentiation, and by not

isolating it.

31. y2 = x3/(C − x), dy

dx
=
y3 + 3x2y

2x3

32. y − x+ Sin−1(x+ y) = C,
dy

dx
=

√
1− (x+ y)2 − 1√
1− (x+ y)2 + 1

33. x2y2 + y ln (2 + sin x) = C, 2xy2 +
y cosx

2 + sinx
+ [2x2y + ln (2 + sinx)]

dy

dx
= 0

34. x3 + y2 − ln |y + x2| = C,
(

1
y + x2

− 2y
)
dy

dx
= 3x2 − 2x

y + x2

35. A curve in the one-parameter family x3 + y3 = Cxy is called a folium of Descartes.
(a) Show that the equation implicitly defines solutions of the differential equation

dy

dx
=
y(y3 − 2x3)
x(2y3 − x3)

.

(b) Find an implicit definition for the solution of the differential equation that satisfies the
condition y(1) = 1. Plot the curve defined by this equation.

(c) Determine the interval on which the function defined implicitly in part (b) is a solution of
the initial-value problem.

36. An important consideration in Section 4.4 will be to determine values of the constant m so that
emx is a solution of a linear differential equation such as

d2y

dx2
− 3

dy

dx
− 4y = 0.

Find two such values.

37. An important consideration in Section 4.10 will be to determine values of the constant m so
that xm is a solution of a linear differential equation such as

x2 d
2y

dx2
− 4x

dy

dx
+ 6y = 0.

Find two such values.
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38. (a) Jason initially at O (figure to the right) walks
along the edge of a swimming pool (the y-axis)
towing his sailboat by a string of length L.
If the boat starts at Q and the string always
remains straight, show that the equation of the
curved path y = y(x) followed by the boat must
satisfy the initial-value problem

dy

dx
= −
√
L2 − x2

x
, y(L) = 0.

y

x

Path of boat

String

Boat

L QO

x,y( )

(b) Find a solution of the initial-value problem.

39. (a) Show that y(x) = 1− (x3 + C)−1 is a one-parameter family of solutions for the differential
equation

dy

dx
= 3x2(y − 1)2.

(b) Find a singular solution.
(c) Repeat parts (a) and (b) if the differential equation is given in the form

1
(y − 1)2

dy

dx
= 3x2.

40. (a) Show that y(x) = Ce2x is a one-parameter family of solutions for the differential equation

dy

dx
= 2y.

(b) Show that there is a particular solution that passes through any given point (x0, y0), and
that this solution can be obtained by specifying C appropriately.

41. (a) Verify that a one-parameter family of solutions for the differential equation

2x
dy

dx
= y

is defined implicitly by the equation y2 = Cx.
(b) Show that, with the exception of points on the y-axis, there is a particular solution that

passes through any given point (x0, y0), and that this solution can be obtained by specifying
C appropriately.

42. Consider the differential equation dy/dx = 1/x2.
(a) Find a solution that satisfies the condition y(1) = 1.
(b) Find a solution that satisfies the condition y(−1) = 2.
(c) Is there a solution that satisfies both the conditions in parts (a) and (b)?

43. Determine whether the following functions are solutions of the differential equation dy/dx =
−x/y on the interval −2 < x < 2. If your answer is no, explain why not.
(a) y(x) =

√
4− x2

(b) y(x) = −
√

4− x2

(c) y(x) =
{√

4− x2, −2 < x < 0
−
√

4− x2, 0 ≤ x < 2
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44. Determine whether the following functions are solutions of the differential equation x(dy/dx)−
2y = 0 on the interval −∞ < x <∞. If your answer is no, explain why not.
(a) y(x) = 2x2

(b) y(x) = −3x2

(c) y(x) =
{
−3x2, x < 0
2x2, x ≥ 0

45. (a) Show that y(x) = Cx2 is a one-parameter family of solutions of the differential equation in
Exercise 44.

(b) If the differential equation is expressed in the form
dy

dx
=

2y
x

, are the functions in the one-

parameter family y(x) = Cx2 still solutions?

46. Results of this section would seem to suggest that differential equations always have an infinite
number of solutions. Can you find a differential equation that has exactly one solution? Can
you find a differential equation that has no solutions?

47. In this exercise, we discuss the “implicit function theorem” from calculus. It states that: An
equation F (x, y) = 0 defines a differentiable function y(x) in some open interval |x − x0| < δ

around x0 if x0 and y0 = y(x0) satisfy F (x0, y0) = 0 and
∂F (x0, y0)

∂y
6= 0. A proof of this

result can be found in advanced calculus books. We illustrate its graphical interpretation here.
Suppose the curve defined by the equation F (x, y) = 0 is as shown in the left figure below. It
is clear that the curve defines a function in an interval around x0. Its derivative can be found
by implicit differentiation

∂F

∂x
+
∂F

∂y

dy

dx
= 0.

When this is solved for dy/dx at x = x0, the derivative is

dy

dx |x0

= −Fx(x0, y0)
Fy(x0, y0)

.

Notice that the requirement Fy(x0, y0) 6= 0 of the theorem ensures that the denominator of this
expression does not vanish. The curves in the middle and right figures do not define y as a
function of x in an open interval around x0, let alone differentiable ones. For the middle figure,
Fy(x0, y0) would be equal to zero, and for the right figure Fy(x0, y0) would not exist.

y

x

x y( 0 0, )

y

x
x y( 0 0, )

y

x
x y( 0 0, )

(a) Show that F (x, y) = x2 + y2 − 4 is an example of the left figure above provided that
−2 < x < 2.

(b) Show that F (x, y) = x2 + y2 − 4 is an example of the middle figure when x0 = ±2.
(c) Show that F (x, y) = y2 + x2(x2 − 1) is an example of the right figure when x0 = 0.
(d) Show that F (x, y) = y3−x with x0 = 0 defines a function in an interval around x0, but not

a differentiable one.




